OCP socket modelling with TLM-2.0
Announcement of OCP-IP’s First Release

Hervé Alexanian, Sonics, inc
Introduction to OCP

• Open Standard
 • Owned by the OCP International Partnership
• OCP-IP provides much more than only a protocol
 • Functional verification specifications
 • Verification tools: BFMs and protocol checkers
 • Parameter capture formats
 • RTL timing classes
 • Analysis and debug tools
 • System-Level Design support
 • Standard interfaces for SystemC models of cores as well as RTL models of cores
• Enabling automation of core provision and SoC specification and assembly
The OCP Modelling Kit Has Been Released

- Public Standard TLM interfaces
 - Based on and compatible with OSCI TLM 2.0
- 4 Levels of abstraction supported: fully cycle-accurate to fully untimed
- OCP configuration management
 - May be hard-coded or supplied to a generic component model at run-time
 - Run-time resolution of master and slave OCP configurations
- OCP master and slave sockets, providing
 - Memory management for extensions and payload objects
 - Payload event queues for timing annotation support or clock cycle synchronization
 - Convenience API for user code
 - Direct bind to OSCI TLM 2.0 sockets where functionally possible
- Performance and trace monitors
- Legacy adapters
- RTL adapters
- Documentation
- Examples

Copyright OCP-IP 2009-2010
OCP-IP SystemC Next Generation Interface Standards

<table>
<thead>
<tr>
<th>OCP-IP SystemC Interface</th>
<th>OSCI TLM compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL0</td>
<td>Not specified by OCP-IP separately for SystemC from other HDLs</td>
</tr>
<tr>
<td></td>
<td>None, this is the RTL level</td>
</tr>
<tr>
<td>TL1</td>
<td>OCP-IP TL1</td>
</tr>
<tr>
<td></td>
<td>Uses TLM-2 generic payload, sometimes with extensions. Uses different protocol phases and rules from OSCI TLM-2.0 BP. Uses nb_transport()</td>
</tr>
<tr>
<td>TL2</td>
<td>OCP-IP TL2</td>
</tr>
<tr>
<td></td>
<td>Uses TLM-2 generic payload, sometimes with extensions. Extensions are a subset of the extensions used at OCP-IP-TL1. Uses different protocol phases and rules from OSCI TLM-2.0 BP and from OCP-IP-TL1. Uses nb_transport()</td>
</tr>
<tr>
<td>TL3</td>
<td>OCP-IP TL3/TL4</td>
</tr>
<tr>
<td></td>
<td>Uses TLM-2 generic payload, sometimes with extensions. Extensions are a subset of the extensions used at OCP-IP-TL2. Uses the same protocol phases and rules as OSCI-TLM-2.0 BP. Extensions may be ignorable in which case OCP-IP-TL3 is directly interoperable with OSCI-TLM-2.0-BP. Uses nb_transport() and b_transport()</td>
</tr>
<tr>
<td>TL4</td>
<td></td>
</tr>
</tbody>
</table>

Copyright OCP-IP 2009-2010
Abstraction levels

TL1: Timing points accurate to the cycle. Combinatorial paths handled.

TL2: Meta data used for dynamic calculation to increase accuracy.

TL3: Static calculation for Request/Response.

TL4: Static calculation for entire transaction. SystemC time advances in quanta.
Layered Structure of the Interfaces

- Prior Kit had Flaws
 - Incomplete documentation
 - Custom data structures
 - Each layer had variations in data representation
 - Forced custom layer adapters

- Using the TLM generic payload allows
 - More reuse at different layers
 - Each layer to focus on its timing specificities
 - Much easier for layer adapters
Layered Structure of the Interfaces

<table>
<thead>
<tr>
<th></th>
<th>TL4</th>
<th>TL3</th>
<th>TL2</th>
<th>TL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td>OSCI Generic Payload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Extensions</td>
<td>bus locking</td>
<td>re-ordering</td>
<td>non-blocking flow control</td>
<td>user extensions bit-mapping</td>
</tr>
<tr>
<td></td>
<td>semaphores</td>
<td></td>
<td>posted writes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exotic addressing modes</td>
<td></td>
<td>in-burst address order (wrap)</td>
<td></td>
</tr>
<tr>
<td>Other Features</td>
<td>run-time compatibility testing</td>
<td></td>
<td>source bandwidth signalling</td>
<td>clock synchronisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>split data and command phases</td>
<td>combinatorial dependencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>transaction chunking</td>
<td></td>
</tr>
</tbody>
</table>

- The orange arrows show where technology from a high level of abstraction is re-used at a lower level.
- Thus TL2 is a superset of TL3 which is a superset of OSCI BP.
- TL1 is not quite a superset of TL2 but is a superset of TL3.
 - TL1 and TL2 technology for modelling timing is different.
OCP-IP Socket…

- TLM-2.0 defines the concept of ‘sockets’
- **OCP-IP provides an OCP specific socket with a number of important features.**

Protocol negotiation to cover all OCP’s

Memory management

Safe handling of time

Standard transport observer (monitor)

Same concepts as used in “GreenSocket”
Socket Bindability

- OCP TLM Sockets test bindability at elaboration time
 - OCP configuration parameters for master and slave are compared
 - binding is rejected for incompatible components
 - a generic slave may inherit its configuration from the master (or v-v)
 - No direct binding between abstraction levels
 - Direct binding from OCP-IP TL3/4 to OSCI TLM 2.0 Base Protocol
 - provided OCP configuration does not exceed BP functionality
A Stake in Methodology

- TLM is a shift, especially with multi-phased modelling

- GreenSocket + GP extensions + TLM extended phases
 - Comprehensive documentation
 - Allow to bridge TLM to OCP terminology
 - Follow Base Protocol

- “Convenience API”
 - Functionality developed from assembling concrete platforms
 - Examples, monitors, layer adapters
 - Member contributions
 - Sonics has interest and experience in TL1
 - Becomes Methodology Layer
Methodology example: Attribute Mutability

Initiator

Interconnect Agent 1

Interconnect Agent 2

Target

txn1, BEGIN_REQ

txn1.thread=1

turnaround queue

mapping

txn1.thread=0

txn1, BEGIN_RESP

txn1.thread=0

txn1, BEGIN_REQ

txn1.thread=0

txn1, BEGIN_RESP
A Stake in Methodology: Practical Additions

- Transaction invariant
 - Applicable at TL1/TL2/TL3
 - Captures all OCP extensions representing transaction data
 - Instance specific extension
 - Added at first sight in nb_transport
- Transaction tracking
 - Applicable at TL1 and TL2
 - Track a phase as soon as it is received (nb_transport)
- Timing guards
 - Applicable at TL1
 - Ensures correct evaluation times for all protocol timing arcs
```cpp
void my_module::first_sight(tlm::tlm_generic_payload& txn) {
    ocpip::ocp_txn_burst_invariant* p_inv = ocpip::check_ispec_extension
        <ocpip::ocp_txn_burst_invariant>(txn, m_acc);
    p_inv->req_position = m_burst_tracker[p_inv->threadid].track_phase(tnx, tlm::BEGIN_REQ);
}
```
Wrap-up

- OCP Modelling Kit exploits all of TLM-2.0
- Generic Payload
- Extension Mechanism
- Timing Annotation
- Base Protocol
- OCP has added to TLM-2.0
 - Extensions
 - Run-time compatibility testing
 - Technology for increased timing accuracy
- Available NOW
More information:

Technical Article: www.chipdesignmag.com

OCP: www.ocpip.org

Code Download: http://www.ocpip.org/systemc_download

GreenSocs: www.greensocs.org

Copyright OCP-IP 2009-2010